# Uniformization properties of ladder systems under MA(S)[S]

### César Corral (Joint work with Paul Szeptycki)

Universidad Nacional Autónoma de México (UNAM)

cicorral@matmor.unam.mx

January 28, 2019



Porcing with a Souslin tree





æ

A ladder system over a stationary subset  $E \subseteq \lim(\omega_1)$  is a sequence  $L = \langle L_{\alpha} : \alpha \in E \rangle$  such that  $ot(L_{\alpha}) = \omega$  and  $\bigcup L_{\alpha} = \alpha$  for every  $\alpha \in E$ .

A ladder system over a stationary subset  $E \subseteq \lim(\omega_1)$  is a sequence  $L = \langle L_{\alpha} : \alpha \in E \rangle$  such that  $ot(L_{\alpha}) = \omega$  and  $\bigcup L_{\alpha} = \alpha$  for every  $\alpha \in E$ .

### Definition

A ladder system *L* is uniformizable if for all sequence of colourings  $\langle f_{\alpha} : L_{\alpha} \to \omega | \alpha \in E \rangle$ , there is a single function  $f : \omega_1 \to \omega$  which almost equals all  $f_{\alpha}$  (i.e.,  $f \upharpoonright L_{\alpha} =^* f_{\alpha}$ ).

A ladder system over a stationary subset  $E \subseteq \lim(\omega_1)$  is a sequence  $L = \langle L_{\alpha} : \alpha \in E \rangle$  such that  $ot(L_{\alpha}) = \omega$  and  $\bigcup L_{\alpha} = \alpha$  for every  $\alpha \in E$ .

### Definition

A ladder system *L* is uniformizable if for all sequence of colourings  $\langle f_{\alpha} : L_{\alpha} \to \omega | \alpha \in E \rangle$ , there is a single function  $f : \omega_1 \to \omega$  which almost equals all  $f_{\alpha}$  (i.e.,  $f \upharpoonright L_{\alpha} =^* f_{\alpha}$ ).

### The space $X_L$

Given a ladder system *L*, we define the space  $X_L = \omega_1 \times \{0\} \cup E \times \{1\}$ , where the points of  $\omega_1 \times \{0\}$  are isolated and a base neighborhood at  $(\alpha, 1) \in E \times \{1\}$  is of the form  $(\alpha, 1) \cup (L_\alpha \setminus F \times \{0\})$  where *F* is finite

< □ > < □ > < □ > < □ > < □ > < □ >

A ladder system is said to satisfy  $\mathcal{M}_n$  if for each  $f : E \to \omega$  there is a function  $F : \omega_1 \to [\omega]^{n+1}$  such that  $f(\alpha) \in F(L_\alpha(n))$  for all  $\alpha \in E$  and all but finitely many  $n \in \omega$ .

A ladder system is said to satisfy  $\mathcal{M}_{<\omega}$  if for each  $f : E \to \omega$  there is a function  $F : \omega_1 \to [\omega]^{<\omega}$  such that  $f(\alpha) \in F(L_{\alpha}(n))$  for all  $\alpha \in E$  and all but finitely many  $n \in \omega$ .

A ladder system is said to satisfy  $\mathcal{P}_n$  if for each  $f : E \to \omega$  there is a function  $F : \omega_1 \to [\omega]^{n+1}$  such that  $f(\alpha) \in F(L_\alpha(n))$  for all  $\alpha \in E$  and all but finitely many  $n \in \omega$ . Moreover  $F \upharpoonright L_\alpha$  is eventually constant.

A ladder system is said to satisfy  $\mathcal{P}_{<\omega}$  if for each  $f: E \to \omega$  there is a function  $F: \omega_1 \to [\omega]^{<\omega}$  such that  $f(\alpha) \in F(L_{\alpha}(n))$  for all  $\alpha \in E$  and all but finitely many  $n \in \omega$ . Moreover  $F \upharpoonright L_{\alpha}$  is eventually constant.

A ladder system is said to satisfy  $\mathcal{P}_{<\omega}$  if for each  $f: E \to \omega$  there is a function  $F: \omega_1 \to [\omega]^{<\omega}$  such that  $f(\alpha) \in F(L_{\alpha}(n))$  for all  $\alpha \in E$  and all but finitely many  $n \in \omega$ . Moreover  $F \upharpoonright L_{\alpha}$  is eventually constant.

### Topological equivalences

- $X_L$  is normal iff L satisfies  $\mathcal{P}_0$ .
- $X_L$  is countably metacompact iff L satisfies  $\mathcal{M}_{<\omega}$ .
- If L satisfies  $\mathcal{P}_{<\omega}$ , then  $X_L$  is countably paracompact.

A ladder system is said to satisfy  $\mathcal{P}_{<\omega}$  if for each  $f: E \to \omega$  there is a function  $F: \omega_1 \to [\omega]^{<\omega}$  such that  $f(\alpha) \in F(L_{\alpha}(n))$  for all  $\alpha \in E$  and all but finitely many  $n \in \omega$ . Moreover  $F \upharpoonright L_{\alpha}$  is eventually constant.

### Topological equivalences

- $X_L$  is normal iff L satisfies  $\mathcal{P}_0$ .
- $X_L$  is countably metacompact iff L satisfies  $\mathcal{M}_{<\omega}$ .
- If L satisfies  $\mathcal{P}_{<\omega}$ , then  $X_L$  is countably paracompact.

It is still open if the converse of the last point holds.

A ladder system satisfies  $G_i$  if for each  $f : \omega_1 \to \omega$  the set  $\{\alpha \in E : \varphi_i(f, \alpha)\}$  is nonstationary

• 
$$\varphi_1(f,\alpha) \equiv |f''(L_\alpha)| = \aleph_0$$

- $\varphi_2(f, \alpha) \equiv f \upharpoonright L_{\alpha}$  is finite to one
- $\varphi_3(f, \alpha) \equiv f \upharpoonright L_{\alpha}$  is eventually one to one

A ladder system satisfies  $H_i$  if for each  $f : \omega_1 \to \omega$  the set  $\{\alpha \in E : \neg \varphi_i(f, \alpha)\}$  is stationary

• 
$$\varphi_1(f,\alpha) \equiv |f''(L_\alpha)| = \aleph_0$$

- $\varphi_2(f, \alpha) \equiv f \upharpoonright L_{\alpha}$  is finite to one
- $\varphi_3(f, \alpha) \equiv f \upharpoonright L_{\alpha}$  is eventually one to one

A ladder system satisfies  $H_i$  if for each  $f : \omega_1 \to \omega$  the set  $\{\alpha \in E : \neg \varphi_i(f, \alpha)\}$  is stationary

• 
$$\varphi_1(f, \alpha) \equiv |f''(L_\alpha)| = \aleph_0$$

• 
$$\varphi_2(f, \alpha) \equiv f \upharpoonright L_{\alpha}$$
 is finite to one

•  $\varphi_3(f, \alpha) \equiv f \upharpoonright L_{\alpha}$  is eventually one to one

### Observations

- A &-sequence satisfies H<sub>1</sub>
- A ladder system L satisfies  $H_2$  iff  $E \times \{1\}$  is not a  $G_\delta$  set in  $X_L$ .

Observation

An uniformizable (in the strong sense) ladder system fails to satisfy  $H_3$ 

э

### Observation

An uniformizable (in the strong sense) ladder system fails to satisfy  $H_3$ 

# Theorem (Folklore)

MA implies all ladder systems are uniformizables

### Observation

An uniformizable (in the strong sense) ladder system fails to satisfy  $H_3$ 

# Theorem (Folklore)

MA implies all ladder systems are uniformizables

# Theorem (Shelah)

It is consistent that there exists a ladder system L which satisfies  $\mathcal{P}_0$  and  $H_2.$ 

#### Lemma

Let  $L = \langle L_{\alpha} : \alpha \in E \rangle$  be a ladder system. The space  $X_L$  is countably paracompact iff for all  $f : E \to \omega$ , there exists  $F : \omega_1 \to [\omega]^{<\omega}$  and  $g : E \to [\omega]^{<\omega}$  such that

 $f(\alpha) \in F(\beta) \subseteq g(\alpha)$ 

for all  $\alpha \in E$  and for all but finitely many  $\beta \in L_{\alpha}$ .

#### Lemma

Let  $L = \langle L_{\alpha} : \alpha \in E \rangle$  be a ladder system. The space  $X_L$  is countably paracompact iff for all  $f : E \to \omega$ , there exists  $F : \omega_1 \to [\omega]^{<\omega}$  and  $g : E \to [\omega]^{<\omega}$  such that

 $f(\alpha) \in F(\beta) \subseteq g(\alpha)$ 

for all  $\alpha \in E$  and for all but finitely many  $\beta \in L_{\alpha}$ .

### Theorem

After forcing with a Souslin tree S the following hold for every ladder system L:

- X<sub>L</sub> is not countably paracompact
- L does not satisfy  $\mathcal{M}_n$  for every  $n \in \omega$

Image: A matrix

# Sketch of proof

• Assume  $S \subseteq \omega^{<\omega_1}$  is a Souslin tree and let  $b \subseteq S$  be a generic branch. Also, let  $\dot{L} = \langle \dot{L}_{\alpha} : \alpha \in \dot{E} \rangle$  be a name for a ladder system.

э

## Sketch of proof

- Assume  $S \subseteq \omega^{<\omega_1}$  is a Souslin tree and let  $b \subseteq S$  be a generic branch. Also, let  $\dot{L} = \langle \dot{L}_{\alpha} : \alpha \in \dot{E} \rangle$  be a name for a ladder system.
- Find a club  $C \subseteq \omega_1$  such that for every  $s \in S$  with  $l(s) = \alpha^+$ , s decides " $\alpha \in \dot{E}$ " and  $\dot{L}_{\alpha}$ , where  $\alpha^+ = \min\{\beta \in C : \beta > \alpha\}$ .

### Sketch of proof

- Assume  $S \subseteq \omega^{<\omega_1}$  is a Souslin tree and let  $b \subseteq S$  be a generic branch. Also, let  $\dot{L} = \langle \dot{L}_{\alpha} : \alpha \in \dot{E} \rangle$  be a name for a ladder system.
- Find a club  $C \subseteq \omega_1$  such that for every  $s \in S$  with  $l(s) = \alpha^+$ , s decides " $\alpha \in \dot{E}$ " and  $\dot{L}_{\alpha}$ , where  $\alpha^+ = \min\{\beta \in C : \beta > \alpha\}$ .
- In V[b] define  $f: \omega_1 \to \omega$  such that  $f(\alpha) = b(\alpha^+)$ .

### Sketch of proof

- Assume  $S \subseteq \omega^{<\omega_1}$  is a Souslin tree and let  $b \subseteq S$  be a generic branch. Also, let  $\dot{L} = \langle \dot{L}_{\alpha} : \alpha \in \dot{E} \rangle$  be a name for a ladder system.
- Find a club  $C \subseteq \omega_1$  such that for every  $s \in S$  with  $l(s) = \alpha^+$ , s decides " $\alpha \in \dot{E}$ " and  $\dot{L}_{\alpha}$ , where  $\alpha^+ = \min\{\beta \in C : \beta > \alpha\}$ .
- In V[b] define  $f: \omega_1 \to \omega$  such that  $f(\alpha) = b(\alpha^+)$ .
- Let  $t \in S$  and let  $\dot{F}$  be a name for a function from  $\omega_1$  to  $[\omega]^{<\omega}$ . Using elementary submodels, we can find a level  $\delta \in \omega_1$  (with  $\delta > I(t)$ ) and  $s \ge t$  such that  $I(s) = \delta^+$ ,  $s \Vdash \delta \in \dot{E}$  and s decides  $\dot{F} \upharpoonright L_{\delta}$ .

# Sketch of proof

- Assume  $S \subseteq \omega^{<\omega_1}$  is a Souslin tree and let  $b \subseteq S$  be a generic branch. Also, let  $\dot{L} = \langle \dot{L}_{\alpha} : \alpha \in \dot{E} \rangle$  be a name for a ladder system.
- Find a club  $C \subseteq \omega_1$  such that for every  $s \in S$  with  $l(s) = \alpha^+$ , s decides " $\alpha \in \dot{E}$ " and  $\dot{L}_{\alpha}$ , where  $\alpha^+ = \min\{\beta \in C : \beta > \alpha\}$ .
- In V[b] define  $f: \omega_1 \to \omega$  such that  $f(\alpha) = b(\alpha^+)$ .
- Let  $t \in S$  and let  $\dot{F}$  be a name for a function from  $\omega_1$  to  $[\omega]^{<\omega}$ . Using elementary submodels, we can find a level  $\delta \in \omega_1$  (with  $\delta > I(t)$ ) and  $s \ge t$  such that  $I(s) = \delta^+$ ,  $s \Vdash \delta \in \dot{E}$  and s decides  $\dot{F} \upharpoonright L_{\delta}$ .
- Finally, if the set  $H = \bigcap_{n \in \omega} \bigcup_{m \ge n} F(L_{\delta}(m))$  is infinite, then no g can satisfy the conclusion of the lemma. On the other hand, if H is finite, we are free to put the value of  $f(\delta)$  out of this set.

э

< □ > < □ > < □ > < □ > < □ > < □ >

• Almost verbatim the same proof works for  $\mathcal{M}_n$ .

< A

æ

- Almost verbatim the same proof works for  $\mathcal{M}_n$ .
- Thus, a model obtained by a forcing extension with a Souslin tree is the opposite of a model of *MA* also for uniformization properties.

- Almost verbatim the same proof works for  $\mathcal{M}_n$ .
- Thus, a model obtained by a forcing extension with a Souslin tree is the opposite of a model of *MA* also for uniformization properties.
- What happens in models where *MA* and Souslin trees are combined? Is there any uniformization property for ladder systems?

### Definition (Larson, Todorcevic)

MA(S) is the assertion that there exists a (coherent) Souslin tree S such that for every poset  $\mathbb{P}$  which satisfies that  $\mathbb{P} \times S$  is ccc and for every family  $\mathcal{D} = \{D_{\alpha} : \alpha \in \omega_1\}$  of dense subsets of  $\mathbb{P}$ , there exists a  $\mathcal{D}$ -generic filter  $G \subseteq \mathbb{P}$ .

### Definition (Larson, Todorcevic)

MA(S) is the assertion that there exists a (coherent) Souslin tree S such that for every poset  $\mathbb{P}$  which satisfies that  $\mathbb{P} \times S$  is ccc and for every family  $\mathcal{D} = \{D_{\alpha} : \alpha \in \omega_1\}$  of dense subsets of  $\mathbb{P}$ , there exists a  $\mathcal{D}$ -generic filter  $G \subseteq \mathbb{P}$ .

### Notation

MA(S)[S] implies  $\varphi \Leftrightarrow \varphi$  is true in any model obtained by a forcing extension with the Souslin tree S over a model of MA(S).

### Definition (Larson, Todorcevic)

MA(S) is the assertion that there exists a (coherent) Souslin tree S such that for every poset  $\mathbb{P}$  which satisfies that  $\mathbb{P} \times S$  is ccc and for every family  $\mathcal{D} = \{D_{\alpha} : \alpha \in \omega_1\}$  of dense subsets of  $\mathbb{P}$ , there exists a  $\mathcal{D}$ -generic filter  $G \subseteq \mathbb{P}$ .

### Notation

MA(S)[S] implies  $\varphi \Leftrightarrow \varphi$  is true in any model obtained by a forcing extension with the Souslin tree S over a model of MA(S).

### Observation

A total ladder system  $L = \langle L_{\alpha} : \alpha \in E \rangle$  is a ladder system in which  $E = \lim(omega_1)$ . Note that the property  $\mathcal{M}_{<\omega}$  is hereditary respect to the stationary set.

10 / 17

# MA(S)[S]

#### Lemma

Let  $B = \{t_{\alpha} : \alpha < \omega_1\} \subseteq S$  be uncountable. Then for every  $\gamma \in \omega_1$ , there exists a chain  $\{t_{\alpha_{\xi}} : \xi \in \gamma\} \subseteq B$  with order type  $\gamma$ .

э

# MA(S)[S]

#### Lemma

Let  $B = \{t_{\alpha} : \alpha < \omega_1\} \subseteq S$  be uncountable. Then for every  $\gamma \in \omega_1$ , there exists a chain  $\{t_{\alpha_{\mathcal{E}}}: \xi \in \gamma\} \subseteq B$  with order type  $\gamma$ .

### Theorem

MA(S)[S] implies that all (total) ladder system satisfy  $\mathcal{M}_{<\omega}$ .

э

11 / 17

#### Lemma

Let  $B = \{t_{\alpha} : \alpha < \omega_1\} \subseteq S$  be uncountable. Then for every  $\gamma \in \omega_1$ , there exists a chain  $\{t_{\alpha_{\varepsilon}}: \xi \in \gamma\} \subseteq B$  with order type  $\gamma$ .

#### Theorem

MA(S)[S] implies that all (total) ladder system satisfy  $\mathcal{M}_{\leq \omega}$ .

### <u>Ske</u>tch of proof

• Let V be a model of MA(S). Let  $\dot{L} = \langle \dot{L}_{\alpha} : \alpha \in \lim(\omega_1) \rangle$  be an S-name for a total ladder system and let f be an S-name for a function from  $\lim(\omega_1)$  to  $\omega$ .

Image: A matrix

э

11 / 17

#### Lemma

Let  $B = \{t_{\alpha} : \alpha < \omega_1\} \subseteq S$  be uncountable. Then for every  $\gamma \in \omega_1$ , there exists a chain  $\{t_{\alpha_{\xi}} : \xi \in \gamma\} \subseteq B$  with order type  $\gamma$ .

### Theorem

MA(S)[S] implies that all (total) ladder system satisfy  $\mathcal{M}_{<\omega}$ .

### Sketch of proof

- Assume WLOG that for every  $\alpha \in \omega_1$  and every  $s \in S$  such that  $l(s) = \alpha + 1$ , s decides  $\dot{f}(\alpha)$  and  $\dot{L}_{\alpha}$ .

3

11 / 17

< □ > < □ > < □ > < □ > < □ > < □ >

### Sketch of proof

• Define the forcing  $\mathbb{P} = \mathbb{P}(\dot{f}, \dot{L})$  as follows:

$$\mathbb{P} = \{(p,F): p \in \textit{Fin}(S,[\omega]^{<\omega}) \land F \in [\mathsf{lim}(\omega_1)]^{<\omega}\}$$

and 
$$(p, F) \leq (q, G)$$
 iff  $p \supseteq q$ ,  $F \supseteq G$  and  
 $\forall s \in dom(p) \setminus dom(q) \ \forall \alpha \in G \ \forall t \in A(p)$ 

$$\left((s \subseteq t) \land (l(t) > lpha) \land (t \Vdash ``l(s) \in \dot{L}_{lpha} \land \dot{f}(lpha) = n")
ight) \implies (n \in p(s)$$

where A(p) is the set of maximal elements of domain of p.

3

12 / 17

### Sketch of proof

### • Note that a generic filter G over $\mathbb{P}$ give us a total function

$$h_G = \bigcup \{p : \exists F((p, F) \in G)\} : S \to [\omega]^{<\omega}$$

A I > 
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

# Proof

## Sketch of proof

• Note that a generic filter G over  $\mathbb{P}$  give us a total function

$$h_G = \bigcup \{p : \exists F((p,F) \in G)\} : S \to [\omega]^{<\omega}$$

• Given a generic branch  $b \subseteq S$ ,  $h_G \upharpoonright b$  looks like a function from  $\omega_1$  to  $[\omega]^{<\omega}$  which uniformizes f in the sense of  $\mathcal{M}_{<\omega}$ .

Image: Image:

э

# Proof

## Sketch of proof

• Note that a generic filter G over  $\mathbb{P}$  give us a total function

$$h_G = \bigcup \{p : \exists F((p,F) \in G)\} : S \to [\omega]^{<\omega}.$$

- Given a generic branch  $b \subseteq S$ ,  $h_G \upharpoonright b$  looks like a function from  $\omega_1$  to  $[\omega]^{<\omega}$  which uniformizes f in the sense of  $\mathcal{M}_{<\omega}$ .
- In order to prove the existence of such generic filter, prove that  $\mathbb{P}\times S$  is ccc.

# Proof

# Sketch of proof

• Note that a generic filter G over  $\mathbb{P}$  give us a total function

$$h_G = \bigcup \{p : \exists F((p,F) \in G)\} : S \to [\omega]^{<\omega}.$$

- Given a generic branch  $b \subseteq S$ ,  $h_G \upharpoonright b$  looks like a function from  $\omega_1$  to  $[\omega]^{<\omega}$  which uniformizes f in the sense of  $\mathcal{M}_{<\omega}$ .
- In order to prove the existence of such generic filter, prove that  $\mathbb{P} \times S$ is ccc.
- For this, let  $\langle ((p_{\alpha}, F_{\alpha}), t_{\alpha}) : \alpha \in \omega_1 \rangle \subseteq \mathbb{P} \times S$  and assume  $\{dom(p_{\alpha}): \alpha \in \omega_1\}$  and  $\{F_{\alpha}: \alpha \in \omega_1\}$  form  $\Delta$ -systems and that each element in these sets are "far enought" from each other (with exception of the roots).

э

# Sketch of proof

• Using the previous lemma, we can also assume that  $\{t_{\alpha}: \alpha \leq \omega\}$  is an *S*-chain.

э

# Sketch of proof

- Using the previous lemma, we can also assume that  $\{t_{\alpha}: \alpha \leq \omega\}$  is an *S*-chain.
- Finally, find  $n \in \omega$  such that  $(p_{\omega}, F_{\omega})$  and  $(p_n, F_n)$  are compatible. Thus since  $t_{\omega}$  and  $t_n$  are in the chain,  $((p_{\omega}, F_{\omega}), t_{\omega})$  and  $((p_n, F_n), t_n)$  are compatible as well.

# Anti-uniformization properties

And... what about anti-uniformization properties in this kind of models?

# Definition (Reminder)

A ladder system satisfies  $H_3$  if for each  $f : \omega_1 \to \omega$  the set  $\{\alpha \in E : f \upharpoonright L_{\alpha} \text{ is not eventually one-to-one}\}$  is stationary.

# Definition (Reminder)

A ladder system satisfies  $H_3$  if for each  $f : \omega_1 \to \omega$  the set  $\{\alpha \in E : f \upharpoonright L_{\alpha} \text{ is not eventually one-to-one}\}$  is stationary.

Note that we just have to prove that for every total ladder system  $L = \langle L_{\alpha} : \alpha \in \lim(\omega_1) \rangle$  there exists a function  $f : \omega_1 \to \omega$  such that  $f \upharpoonright L_{\alpha}$  is eventually one-to-one for every  $\alpha \in \lim(\omega_1)$ .

# Definition (Reminder)

A ladder system satisfies  $H_3$  if for each  $f : \omega_1 \to \omega$  the set  $\{\alpha \in E : f \upharpoonright L_{\alpha} \text{ is not eventually one-to-one}\}$  is stationary.

Note that we just have to prove that for every total ladder system  $L = \langle L_{\alpha} : \alpha \in \lim(\omega_1) \rangle$  there exists a function  $f : \omega_1 \to \omega$  such that  $f \upharpoonright L_{\alpha}$ is eventually one-to-one for every  $\alpha \in \lim(\omega_1)$ . Since *S* doesn't add reals and is ccc, if  $L = \langle L_{\alpha} : \alpha \in \lim(\omega_1) \rangle$  is a total ladder system in the extension, there exists a set  $L' = \{L_{\alpha}^n : \alpha \in \lim(\omega_1) \land n \in \omega\}$  in the ground model such that  $L_{\alpha} \in \{L_{\alpha}^n : n \in \omega\}$  for each  $\alpha$  and in consequence it is suffices to prove that the following holds:

15 / 17

For every family  $L = \{L_{\alpha}^{n} : \alpha \in \lim(\omega_{1}) \land n \in \omega\}$  (where each  $L_{\alpha}^{n}$  is a ladder in  $\alpha$ ) there exists a function  $f : \omega_{1} \to \omega$  such that  $f \upharpoonright L_{\alpha}^{n}$  is eventually one-to-one for every  $\alpha \in \lim(\omega_{1})$  and every  $n \in \omega$ .

For every family  $L = \{L_{\alpha}^{n} : \alpha \in \lim(\omega_{1}) \land n \in \omega\}$  (where each  $L_{\alpha}^{n}$  is a ladder in  $\alpha$ ) there exists a function  $f : \omega_{1} \to \omega$  such that  $f \upharpoonright L_{\alpha}^{n}$  is eventually one-to-one for every  $\alpha \in \lim(\omega_{1})$  and every  $n \in \omega$ .

## Sketch of proof

Let  $\mathbb{P} = \mathbb{P}(L) = \{(p, F) : p \in Fn(\omega_1, \omega) \land F \in [\omega_1 \times \omega]^{<\omega}\}$  and let  $(p, F) \leq (q, G)$  iff  $p \supseteq q, F \supseteq G$  and  $(p \setminus q) \upharpoonright L_{\alpha}^n$  is one-to-one for every  $(\alpha, n) \in G$ .

For every family  $L = \{L_{\alpha}^{n} : \alpha \in \lim(\omega_{1}) \land n \in \omega\}$  (where each  $L_{\alpha}^{n}$  is a ladder in  $\alpha$ ) there exists a function  $f : \omega_{1} \to \omega$  such that  $f \upharpoonright L_{\alpha}^{n}$  is eventually one-to-one for every  $\alpha \in \lim(\omega_{1})$  and every  $n \in \omega$ .

## Sketch of proof

Let  $\mathbb{P} = \mathbb{P}(L) = \{(p, F) : p \in Fn(\omega_1, \omega) \land F \in [\omega_1 \times \omega]^{<\omega}\}$  and let  $(p, F) \leq (q, G)$  iff  $p \supseteq q, F \supseteq G$  and  $(p \setminus q) \upharpoonright L_{\alpha}^n$  is one-to-one for every  $(\alpha, n) \in G$ .

Repeat the scheme of the last theorem using this poset.

★ 国 ▶ ★ 国 ▶ 1 国

For every family  $L = \{L_{\alpha}^{n} : \alpha \in \lim(\omega_{1}) \land n \in \omega\}$  (where each  $L_{\alpha}^{n}$  is a ladder in  $\alpha$ ) there exists a function  $f : \omega_{1} \to \omega$  such that  $f \upharpoonright L_{\alpha}^{n}$  is eventually one-to-one for every  $\alpha \in \lim(\omega_{1})$  and every  $n \in \omega$ .

## Sketch of proof

Let  $\mathbb{P} = \mathbb{P}(L) = \{(p, F) : p \in Fn(\omega_1, \omega) \land F \in [\omega_1 \times \omega]^{<\omega}\}$  and let  $(p, F) \leq (q, G)$  iff  $p \supseteq q, F \supseteq G$  and  $(p \setminus q) \upharpoonright L_{\alpha}^n$  is one-to-one for every  $(\alpha, n) \in G$ . Repeat the scheme of the last theorem using this poset.

The main question regarding uniformization and anti-uniformization properties then, remains open:

For every family  $L = \{L_{\alpha}^{n} : \alpha \in \lim(\omega_{1}) \land n \in \omega\}$  (where each  $L_{\alpha}^{n}$  is a ladder in  $\alpha$ ) there exists a function  $f : \omega_{1} \to \omega$  such that  $f \upharpoonright L_{\alpha}^{n}$  is eventually one-to-one for every  $\alpha \in \lim(\omega_{1})$  and every  $n \in \omega$ .

## Sketch of proof

Let  $\mathbb{P} = \mathbb{P}(L) = \{(p, F) : p \in Fn(\omega_1, \omega) \land F \in [\omega_1 \times \omega]^{<\omega}\}$  and let  $(p, F) \leq (q, G)$  iff  $p \supseteq q, F \supseteq G$  and  $(p \setminus q) \upharpoonright L_{\alpha}^n$  is one-to-one for every  $(\alpha, n) \in G$ . Repeat the scheme of the last theorem using this poset.

The main question regarding uniformization and anti-uniformization properties then, remains open:

#### Question

Is there (consistently) a ladder system which satisfies  $\mathcal{M}_{<\omega}$  and  $G_1$ ?

イロト イポト イヨト イヨト 二日

# Thank you!

Image: A matrix

æ