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Basic definitions

Definition
A ladder system over a stationary subset E ⊆ lim(ω1) is a sequence
L = 〈Lα : α ∈ E 〉 such that ot(Lα) = ω and

⋃
Lα = α for every α ∈ E .

Definition
A ladder system L is uniformizable if for all sequence of colourings
〈fα : Lα → ω|α ∈ E 〉, there is a single function f : ω1 → ω which almost
equals all fα (i.e., f � Lα =∗ fα).

The space XL

Given a ladder system L, we define the space XL = ω1 × {0} ∪ E × {1},
where the points of ω1 × {0} are isolated and a base neighborhood at
(α, 1) ∈ E × {1} is of the form (α, 1) ∪ (Lα \ F × {0}) where F is finite
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Weak uniformizations

Definition
A ladder system is said to satisfyMn if for each f : E → ω there is a
function F : ω1 → [ω]n+1 such that f (α) ∈ F (Lα(n)) for all α ∈ E and all
but finitely many n ∈ ω.

Topological equivalences
XL is normal iff L satisfies P0.
XL is countably metacompact iff L satisfiesM<ω.
If L satisfies P<ω, then XL is countably paracompact.

It is still open if the converse of the last point holds.
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Anti-uniformization properties

Definition
A ladder system satisfies Gi if for each f : ω1 → ω the set
{α ∈ E : ϕi (f , α)} is nonstationary

ϕ1(f , α) ≡ |f ′′(Lα)| = ℵ0

ϕ2(f , α) ≡ f � Lα is finite to one
ϕ3(f , α) ≡ f � Lα is eventually one to one

Observations
A ♣-sequence satisfies H1

A ladder system L satisfies H2 iff E × {1} is not a Gδ set in XL.
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Some results

Observation
An uniformizable (in the strong sense) ladder system fails to satisfy H3

Theorem (Folklore)
MA implies all ladder systems are uniformizables

Theorem (Shelah)
It is consistent that there exists a ladder system L which satisfies P0 and
H2.
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Forcing with a Souslin tree

Lemma
Let L = 〈Lα : α ∈ E 〉 be a ladder system. The space XL is countably
paracompact iff for all f : E → ω, there exists F : ω1 → [ω]<ω and
g : E → [ω]<ω such that

f (α) ∈ F (β) ⊆ g(α)

for all α ∈ E and for all but finitely many β ∈ Lα.

Theorem
After forcing with a Souslin tree S the following hold for every ladder
system L:

XL is not countably paracompact
L does not satisfyMn for every n ∈ ω
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Proof

Sketch of proof
Assume S ⊆ ω<ω1 is a Souslin tree and let b ⊆ S be a generic branch.
Also, let L̇ = 〈L̇α : α ∈ Ė 〉 be a name for a ladder system.

Find a club C ⊆ ω1 such that for every s ∈ S with l(s) = α+, s
decides “α ∈ Ė ” and L̇α, where α+ = min{β ∈ C : β > α}.
In V [b] define f : ω1 → ω such that f (α) = b(α+).
Let t ∈ S and let Ḟ be a name for a function from ω1 to [ω]<ω. Using
elementary submodels, we can find a level δ ∈ ω1 (with δ > l(t)) and
s ≥ t such that l(s) = δ+, s “δ ∈ Ė ” and s decides Ḟ � Lδ.
Finally, if the set H =

⋂
n∈ω

⋃
m≥n F (Lδ(m)) is infinite, then no g can

satisfy the conclusion of the lemma. On the other hand, if H is finite,
we are free to put the value of f (δ) out of this set.
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Almost verbatim the same proof works forMn.

Thus, a model obtained by a forcing extension with a Souslin tree is
the opposite of a model of MA also for uniformization properties.
What happens in models where MA and Souslin trees are combined?
Is there any uniformization property for ladder systems?
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Definitions

Definition (Larson,Todorcevic)
MA(S) is the assertion that there exists a (coherent) Souslin tree S such
that for every poset P which satisfies that P× S is ccc and for every family
D = {Dα : α ∈ ω1} of dense subsets of P, there exists a D-generic filter
G ⊆ P.

Notation
MA(S)[S ] implies ϕ⇔ ϕ is true in any model obtained by a forcing
extension with the Souslin tree S over a model of MA(S).

Observation
A total ladder system L = 〈Lα : α ∈ E 〉 is a ladder system in which
E = lim(omega1). Note that the propertyM<ω is hereditary respect to
the stationary set.
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MA(S)[S ]

Lemma
Let B = {tα : α < ω1} ⊆ S be uncountable. Then for every γ ∈ ω1, there
exists a chain {tαξ

: ξ ∈ γ} ⊆ B with order type γ.

Theorem
MA(S)[S ] implies that all (total) ladder system satisfyM<ω.

Sketch of proof

Let V be a model of MA(S). Let L̇ = 〈L̇α : α ∈ lim(ω1)〉 be an
S-name for a total ladder system and let ḟ be an S-name for a
function from lim(ω1) to ω.
Assume WLOG that for every α ∈ ω1 and every s ∈ S such that
l(s) = α + 1, s decides ḟ (α) and L̇α.
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Proof

Sketch of proof

Define the forcing P = P(ḟ , L̇) as follows:

P = {(p,F ) : p ∈ Fin(S , [ω]<ω) ∧ F ∈ [lim(ω1)]<ω}

and (p,F ) ≤ (q,G ) iff p ⊇ q, F ⊇ G and
∀s ∈ dom(p) \ dom(q) ∀α ∈ G ∀t ∈ A(p)(

(s ⊆ t) ∧ (l(t) > α) ∧ (t  “l(s) ∈ L̇α ∧ ḟ (α) = n”)
)

=⇒ (n ∈ p(s))

where A(p) is the set of maximal elements of domain of p.
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Proof

Sketch of proof
Note that a generic filter G over P give us a total function

hG =
⋃
{p : ∃F ((p,F ) ∈ G )} : S → [ω]<ω.

Given a generic branch b ⊆ S , hG � b looks like a function from ω1 to
[ω]<ω which uniformizes f in the sense ofM<ω.
In order to prove the existence of such generic filter, prove that P× S
is ccc.
For this, let 〈((pα,Fα), tα) : α ∈ ω1〉 ⊆ P× S and assume
{dom(pα) : α ∈ ω1} and {Fα : α ∈ ω1} form ∆-systems and that
each element in these sets are “far enought” from each other (with
exception of the roots).
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{dom(pα) : α ∈ ω1} and {Fα : α ∈ ω1} form ∆-systems and that
each element in these sets are “far enought” from each other (with
exception of the roots).
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Proof

Sketch of proof
Using the previous lemma, we can also assume that {tα : α ≤ ω} is an
S-chain.

Finally, find n ∈ ω such that (pω,Fω) and (pn,Fn) are compatible.
Thus since tω and tn are in the chain, ((pω,Fω), tω) and ((pn,Fn), tn)
are compatible as well.
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Anti-uniformization properties

And... what about anti-uniformization properties in this kind of models?

Unfortunately, there is no anti-uniformizable ladder systems. We will prove
that MA(S)[S ] implies every ladder system fails to satisfy H3.

Definition (Reminder)
A ladder system satisfies H3 if for each f : ω1 → ω the set
{α ∈ E : f � Lα is not eventually one-to-one} is stationary.

Note that we just have to prove that for every total ladder system
L = 〈Lα : α ∈ lim(ω1)〉 there exists a function f : ω1 → ω such that f � Lα
is eventually one-to-one for every α ∈ lim(ω1).
Since S doesn’t add reals and is ccc, if L = 〈Lα : α ∈ lim(ω1)〉 is a total
ladder system in the extension, there exists a set
L′ = {Lnα : α ∈ lim(ω1) ∧ n ∈ ω} in the ground model such that
Lα ∈ {Lnα : n ∈ ω} for each α and in consequence it is suffices to prove
that the following holds:
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Theorem
For every family L = {Lnα : α ∈ lim(ω1) ∧ n ∈ ω} (where each Lnα is a
ladder in α) there exists a function f : ω1 → ω such that f � Lnα is
eventually one-to-one for every α ∈ lim(ω1) and every n ∈ ω.

Sketch of proof
Let P = P(L) = {(p,F ) : p ∈ Fn(ω1, ω) ∧ F ∈ [ω1 × ω]<ω} and let
(p,F ) ≤ (q,G ) iff p ⊇ q,F ⊇ G and (p \ q) � Lnα is one-to-one for every
(α, n) ∈ G .
Repeat the scheme of the last theorem using this poset.

The main question regarding uniformization and anti-uniformization
properties then, remains open:

Question
Is there (consistently) a ladder system which satisfiesM<ω and G1?
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Thank you!
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